Mathematics and Music:

Singing the Same Tune

Michael Peterson Spring, 2022

Discipline Organization at Las Positas College

Arts and Humanities

- Mathematics
- Physics

STEM

- Chemistry
- Computer Science
- Biology
- Others!

- MusicArt
- Dance
- English
- Foreign Languages
 - Others!

Discipline Organization in the Middle Ages

- Trivium ("Arts of the Word")
- Grammar
- Logic
- Rhetoric

Quadrivium ("Arts of the Number")

- Arithmetic
- Geometry
- AstronomyMusic

Pythagoras of Samos c. 570 - c. 495 BCE

$$a^2 + b^2 = c^2$$

Every music interval corresponds with a ratio.

Fifth 3:2 Major third 5:4 Whole step 9:8

Leonhard Euler classified intervals by dissonance/consonance (i.e. "order of softness")

Interval	Ratio	Order of Softness
Unison	1:1	1
Octave	1:2	2
Octave + Fifth	1:3	3
Two octaves	1:4	3
Three octaves	1:8	4
Two octaves + Major third	1:5	5

Euler's Gradus Function

Let *n* be the product of the two numbers in the interval's ratio. Suppose its prime factorization is

$$n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 (p_i distinct primes, $a_i \ge 1$)

Then the order of softness is

$$E(n) = 1 + \sum_{k=1}^{r} a_{k}(p_{k} - 1)$$

But ...

On a keyboard, not possible for every interval to have these ratios

Tuning from C to E Differently

Tuning Octaves using Thirds

 $5/4 \ge 5/4 \ge 5/4 = 1.953125 \neq 2$

Pure Thirds

Gives Out of Tune Octaves!

What do we do?

Pick an interval to be in tune

Quarter-Comma Meantone

Common in 16th and 17th Centuries

Slightly Narrowed (Out of tune) Fifths

But ... Tuning Octaves using Thirds

Pure Thirds

Gives Out of Tune Octaves!

As you tune up ... you get more sharps

Sharps ≠ Flats

As you tune down ... you get more flats

Passages that Do Not Work in Quarter-Comma Meantone

Excerpts of Sonata VII from *Sonate di Cimbalo in varie maniere sopra l'Ave Maris Stella* by Gioan Pietro del Buono (d. 1657)

Chromatic Harpsichord

Chromatic Harpsichord Illustrations by Giozeffo Zarlino

The Problem with Chromatic Harpsichords

Impractical to Play, Build or Maintain

What do we do?

Pick another interval to be in tune

Hmmm ... what about octaves?

We can slightly temper the tuning ratios (fifths, thirds, etc) to make octaves pure and all keys possible.

Called "well-tempered"

The Well-Tempered Clavier (1722) Johann Sebastian Bach

First collection in all possible keys (major and minor) because of this new way of tuning

1747: Bach joined the Mizler Society for Correspondence in the Musical Sciences

This society was founded to:

- Establish a musical science based on mathematics, philosophy, and connection to nature
- Share writings/papers with each other

Bach's first Submission to the Mizler Society: The Musical Offering

Music, this complex and mysterious act, precise as algebra and vague as a dream, this art made out of mathematics and air, is simply the result of the strange properties of a little membrane.

- Guy de Maupassant

